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Detailed moist-convection models of the atmosphere require solution of the coalescen- 
ce/collision-breakup equation to predict change in the water-drop spectrum. Under certain 
meteorological conditions, computational stability problems are encountered in attempting to 
solve this equation by explicit techniques. A stability analysis is performed making use of 
empirical results that depend on the form of observed drop spectra and the nature of the 
equation. Information derived from the analysis is used to design a two-step implicit scheme 
that provides both stability and efficiency. 6 1985 Academic Press, Inc. 

1. INTRODUCTION 

In modeling moist atmospheric convection, cloud microphysics equations gover- 
ning water-drop size must be solved in conjunction with equations governing 
macrophysical processes such as convection of heat and momentum. Under certain 
physical conditions, the time constants associated with the microphysics are much 
smaller than those associated with the convection process (e.g., [ 1,2]). Due to the 
disparity of the time constants, the combined set of equations constitutes a stiff 
system and special numerical techniques are required to solve the system in an 
efficient manner. 

In this paper we consider the integro-differential (microphysics) equation describ- 
ing the rate of change of the water-drop spectrum due to the simultaneous action of 
coalescence and collision-induced breakup. For this composite equation we 
examine the mechanisms that give rise to small time constants thereby extending’ 
earlier work in which the coalescence and breakup processes were considered 
separately and in different algorithmic settings [2, 31. When these mechanisms are 
at work, explicit solution techniques require the use of small time increments to 
maintain computational stability. Such explicit procedures are commonly used but 
are not well suited to the problem. As an alternative, we present an efficient implicit 
scheme designed to allow the use of large time increments commensurate with those 
typically used to treat the macrophysical processes. The truncation error produced 
by exIjansion of the time increment is considered and found to be acceptably small. 
Incorporation of the new scheme in moist convection models eliminates the need to 
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use different temporal grids for different processes and eliminates the risk of com- 
putational instability. 

2. THE COALESCENCE/BREAKUP EQUATION 

The coalescence/breakup equation is given by Gillespie and List [4] as 

an(m) -=Lzi+w at (1) 

where 

4 % 1 s “+P, ~n(m)n(~L,)f(m,~L1)P(~L;m,~~l)d~d~l (2) 
0 m+p, 0 

and 

W(m) = jam’* 4~) 4m -PI fh m - PL) E2bL, m - PL) 4 

- s O” n(m) O)fh ml &(P, ml &. 
0 

The definitions for the quantities appearing in (2) and (3) are 

n(m) = number density for drops of mass m, 

t = time, 

E2( p, p, ) = coalescence efficiency for drops of masses p, p,, 

P(m; p, ,M,) = mean number of fragments of mass m per collision 
resulting from breakup of drops with masses p, p, (~2 /A, ), 

f(k4 PII = dr, + rJ2m4 PII IAW PI)19 
rp = radius of a drop of mass /A, 

E, (p, p, ) = collision efficiency for drops of masses p, /A i , 

AV(p, pi) = difference in terminal velocities for ,n and pi drops. 

(3) 

In (3) the coalescence integrals are not written in traditional form, and it is well to 
point out that the “collection efficiency” (E, x E2) appears implicitly through the 
product 

K=f xE,, (4) 
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commonly referred to as the “collection kernel.” In the above expressions, SY 
represents the terms corresponding to collision breakup and V the terms 
corresponding to coalescence. For notational convenience, the dependence of n, SY, 
and $? on t is suppressed. In this study we restrict consideration to drops having 
mean diameter >0.14 mm and thereby disregard any effects of small-sized cloud 
droplets. In this framework the collision elliciency E, is taken to be unity based 
upon the experiments of McTaggart-Cowan and List [S]. Their experiments 
showed that for larger drops (viz., raindrops), the “geometric” value of unity is 
appropriate since the drop trajectories are essentially undisturbed by the flow field 
around the drops [4]. Earlier results for smaller droplet pairs (especially cloud 
droplets) have shown E, < 1 (e.g., Levin et al. [6]). In conformance with [4], the 
coalescence efficiency is expressed in the form suggested by Whelpdale and List [7] 
but modified to include the more recent experimental results of McTaggart-Cowan 
and List who observed no coalescence for drops with rP, k 0.5 mm. Due to lack of 
available information, E2 is taken to be zero in the band, 0.25 mm < ylc, < 0.5 mm. 
Thus, we set 

&(cL, ~1) = (1 + @p)--*, rp, < 0.25 mm, 

= 0, otherwise. (5) 

To calculate the terminal velocity V, of a raindrop of mass p, we use the formula 
of Best [S] for low-altitude calculations, 

V&)=A{l -expC-W)PlI, (6) 

where A = 9.32 msec -I, a = 2.9 mg and p = 0.382 (p given in mg). 
The fragment distribution function P can be written as 

P(m; P? Pl) = P&J; PL, Pl) + P&F PT PI) (7) 

where P, and P, are the large-drop and small-drop distributions, respectively [S]. 
P, is a partial Gaussian distribution of the form 

PL(m;~L,~1)=HexpC-(m-~)2/(2a2)l, if m6p+pl, 
= 0, otherwise, (8) 

with 

H = 11.8/@ d,(0.41 - 0.30dJd,)]. (9) 

Here d, = 2r, and d,=2rp,, the resective large- and small-drop diameters in 
millimeters; TV ( z HP ’ ) is the standard deviation. The small drop distribution takes 
the form 

P,(m; CL, pl) = (6.03/4)WO.OW, if m < 1 mg, 

= (6.03/d,) m - 2.6/0.0654”, otherwise, (10) 
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where 

u = -1.0 -0.392/d, (11) 

and f, the mean number of small fragments, is 

f= 3.6(d; d,)“*(O.41 -0,30d,/d,). (12) 

As a first step in the solution of (l), the mass coordinate is discretized by choos- 
ing an expanding set of grid points m,, m2,..., mN+ i where for convenience we let 
mi+ I = 2mi (with m, = 0.00102 mg). The expanding grid provides high resolution at 
the lower end of the spectrum where coalescence substantially alters the otherwise 
exponentially decreasing drop distribution. The mass discretization allows (1) to be 
represented as an autonomous system of nonlinear ODES with time as the indepen- 
dent variable. Instead of directly replacing the integrals in (2) and (3) by 
quadrature formulas, however, we adopt a special technique due to Bleck [9]. The 
procedure is designed to preserve total liquid water content of the droplet spectrum 
and to provide an efficient algorithm by allowing much of the computation to be 
performed in one initial set of calculations. 

To implement the Bleck method, we average (1) over each mass interval 
[mi, mi+ i] and define the mean number density n, over that interval as 

ni = I-:;’ n(m) m dm 
;;+lmdm ’ (13) 

After the averaging operation is performed on (1 ), the functions n appearing in the 
integrands of B and % are approximated by appropriate averages n,. The domains 
of integration are partitioned into subregions in each of which the mean number 
density is assumed constant and hence can be taken outside the integral. The 
resulting integrals then do not involve the dependent variable and can be evaluated 
once and for all. These integrals are represented by the coefficients in the quadratic 
forms that appear in the resulting system 

f+3i+ci, i=l N ,..., 

where 

(15) 

and 

Piiknink-ni i qiknk) 
k=l 

C;= 
2 

( i if’ aijknjnk -ni f b,n,). 
m~+l-m~ j=i-1 k=l 

(16) 
k=l 
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B = (Bi) and C = ( Ci) are the vectors corresponding to the breakup and coalescence 
terms in (1). 

The Bleck coalescence coefficients are given by integrals of the collection kernel K 
as 

aljk = 
i Wk PM + P) 4 & 
A yk 

and 

bik = [B,k K(m, P) m dm dp 

where p represents m -p and the domains of integration are described by 

(17) 

(18) 

and 

A, = { (fi, p): max(mj, mi - p, p) < P < min(m,+ 1, mi+ I - p) 

andmk6p<mk.,) (19) 

B,= {(m,p):mi<m<mi+, andm,d~Lmk+l}. (20) 

The somewhat complicated inequalities defining the A,,‘s are an algebraic descrip- 
tion of a simple partition of the triangular region, m, < fi < mN + 1 ; m, 6 p < p, into 
smaller polygonal areas in each of which the number densities n(p), n(,ii) are 
assumed constant [9, lo]. 

The breakup coefficients take the form [ 111 

and 

s w 
qik = 

Dgk (m+ht 
(m113 + .DL:/~)*U(~; m, pl) dp, dp dm (22) 

where 

U(w P, h)= (3/4)2’371”3pw2’3E,(~L, k) Id%4 lul)l P(m; i4 k), 

with pW the water density, and where 

(23) 

Pitfalls in evaluating the integral (21) are discussed in [12]. The complexity of the 
formulas precludes simple characterization of the coefficient behavior as a function 
of index. However, we can note, at least, that for fixed i, local maxima occur in the 
arrays pUk for j = i, k = i - 1 resulting from the Gaussian peak in PL; largest values 
occur for j = N, k = N - 3 to N corresponding to the collision of pairs of very large 
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drops. For N= 17, the wide range in magnitude of the matrix elements is illustrated 
for i=6, 12: 

.i 
1 

.i 
1 

k-+ 

’ ii\, 0 

\ 

10-3 -‘lo4 

1 \ 
lo-i- 10’ 

i=6 

i= 12 

The qik’s are evaluated by taking appropriate sums of the pijk’s weighted by the fac- 
tor m/(m +p,). It is shown later how the breakup terms, rather than the 
coalescence terms, are responsible for the computational stability problem under 
investigation. 

3. THE STABILITY PROBLEM 

Takahashi [13, 141, in a pioneering effort to include the collision-breakup 
process in a moist-convection model, reported computational difficulties. Takahashi 
used an explicit (forward-stepping) solution procedure and found that an 
exceedingly small step size (Is) was required to maintain computational stability. 
The reported problem led to a stability analysis of the breakup equation [2] for- 
mulated using standard finite-difference approximations that preserve neither drop 
number nor water mass. The analysis led to the discovery of both physical and 
computational mechanisms capable of inducing the stability problem encountered 
by Takahashi. We now apply the same type of analysis to the combined coalescence 
collision-breakup equation (14) and, using information derived from the analysis, 
design a stable scheme. 

As a first step, we linearize the right-hand side of (14) using a truncated Taylor 
expansion to obtain an approximation that lends itself to analysis. The 
inhomogeneous terms can be neglected since only the homogeneous terms affect 
stability [15]. Thus a time-differencing scheme to be used for (14) is analyzed for 
stability by applying the scheme to the test equation 

$=A* (27) 



COALESCENCE/COLLISION-BREAKUP EQUATION 423 

where n = (n,, n2,..., nN)T and where A = (CQ) is the Jacobian matrix that arises 
from the linearization of B and C. If we expand about the point t = to, then A(n) is 
evaluated at to. Since the approximation is valid only for short ranges of t, A must 
be updated during the course of the step-by-step solution process. We assume that 
A is diagonalizable so that the stability conditions for the numerical integration of 
(27) are the same as those for the N independent equations 

dvi 
x = &v, (28) 

where the Ai are the eigenvalues of A (e.g., [lS]). 
The general functional form for A(n) is complicated and provides little insight 

into the nature of the Ai required to treat the stability problem. Nevertheless, if n is 
assumed to have “Marshall-Palmer” exponential form, typical of observed drop 
spectra, numerical evaluation of A(n) suggests that the li may be identified 
immediately, and further that the li can be expressed in closed analytical form. The 
Marshall-Palmer form is 

n(d)= N,ep”d (29) 

where d denotes drop diameter and N,, /i are constants. If (29) is chosen for the 
initial distribution, the solution of (14) remains nearly exponential (though /i, N,, 
change) except at small values of d where coalescence has a pronounced effect. 
Throughout the evolution of the spectrum, A remains approximately upper 
triangular due to the special nature of the spectrum and the Bleck coefficients. 
(Elements below the main diagonal are nonzero but relatively small.) Such a form 
suggests that the eigenvalues of A are close to its diagonal elements. In (30) we 
sketch the form of A for a typical drop distribution, where the fixed-point values 
have been rounded to two decimal places. 

-.04 .oo . . . - .25 -.83 - 

.oo -.04 * . 
* . 

* .od -.02 -6.55 

A= .oo .oo -.03 - lo4 

.oo .Ol -.05 
-. 

*. 
* 1.30 .20 

.oo -.43 1.05 

Iclii( < .005 .OO -.63 

(30) 

Even though the matrix is approximately upper triangular, the diagonal elements 
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may not provide a good approximation to the eigenvalues as we may see by con- 
sidering the simple 2 x 2 form (as suggested by one of the reviewers) 

( 1 IO5 
4x1o-s 1 4 . 

Here the eigenvalues are 0 and 5 and not the diagonal entries 1 and 4. As for the 
2 x 2 example, A contains upper triangular elements many orders of magnitude 
larger than the lower triangular elements. Thus it is possible for products of the 
lower triangular elements with upper triangular elements to affect significantly the 
coefficients (and roots) of the characteristic equation, so that the Aii might not 
provide an adequate representation of the ;li. 

To check against this possibility, we have computed the eigenvalues of A by the 
QR method (e.g., [ 161) in which A is iteratively transformed to more nearly exact 
upper triangular form. The first step involves direct transformation of A to an 
upper Hessenberg matrix H (H, = 0 for j d i - 2). Calculations show that the upper 
triangular elements of H are not increased (but actually decreased) relative to the 
lower triangular elements. The QR method then reduces the subdiagonal elements 
Hi,i ~ 1 to “machine E” relative to the diagonal elements. For all cases tested 
(including those listed in Table I), the calculations verify that the diagonal elements 
of A are, in fact, close approximations to the eigenvalues. The diagonal elements are 
nonpositive and, except where coalescence has a small effect, increase in magnitude 
as we move down the diagonal. Thus (aiil > IcQ[, where i> j so that ~l,,,~ is the 
dominant (negative) eigenvalue il, given by the simple expression 

i.,=o,,=$(B,+C,). 
N 

(31) 

As a consequence of this result, if larger drop categories ( > m,,, + , ) are included in 
the model, IAS/ will be increased accordingly. Due to the cutoff in the coalescence 
efficiency (5), C, has no direct effect in (l), and I&[ represents the net rate at 
which drops of mass mN are lost due to collision breakup alone. However, 
coalescence has indirect influence on ,I9 since the process affects the spectrum n 
upon which B, depends. 

For explicit time-differencing schemes, it is & that determines computational 
stability. As an example, the Euler method applied to (14) can be written in vec- 
torized form 

n ‘+‘-n’=dt(B+C)‘, (32) 

where nT is the finite-difference approximation to n(t) at r = zdt, r = 0, 1,2,..., and 
where (B + C)’ = B(n’) + C(n’). Linearization yields 

n’+‘- n’ = At An’. (33) 
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The stability criterion for (33) is found by consideration of the equivalent system 

v;+‘=(l+dt&)v;, i = l,..., N. (34) 

Equation (34) is stable if, and only if, 11 + A tA,l < 1 for each i. For the case in which 
the li are negative, it follows that the criterion for stability is At < At,, where 

2 
Atc=112,1 (35) 

so that a large \A.,[ severely restricts the allowable step size. The “time constants” 
for the system are defined to be the - l/Ai, so that IA,1 -’ is the “fastest” time con- 
stant. 

Table I lists values of A, and At, for several exponential drop distributions of the 
form ZV,e-? R denotes the rainfall rate associated with the given distribution. For 
the last case shown, the Euler method would require a time increment of about 
1 set to ensure stability. It is seen that an increase in No or R produces a smaller 
value of At,. The maximum rainfall rate considered here is 200 mm hr - ‘, a value 
which represents an extreme situation but one that can occur locally in tropical 
convective activity. To be acceptable, a solution algorithm should be able to deal 
effectively with situations involving very heavy rainfall. 

In the context of moist convection modeling, the time increments associated with 
the last three cases in Table I are undesirably small when used in parallel with 
values of At from 15 to 30 set, say, to integrate the convection equations. 
Figures la,b illustrate results obtained with N,,,,[ =N,(t = 0)] set to 8 x lop4 mmm4 
and A =4.1 (implying a rainfall rate R= 100 mm hr-‘). Figure la shows the 
evolution of the spectrum computed using (32) with a time increment of 2 set; 
Fig. lb shows the development of instability when At (=4 set) slightly exceeds At,. 
The insets show the variation in time of the critical time increment At, computed 
from (31) and (35). The behavior of At, versus t is significantly different from that 
presented in [2] due to the substantial difference in the evolution of the spectrum 
due to the incorporation of coalescence and the use of Bleck’s mass-conserving 
scheme. When the “classical value” of N, = 8 x 1O-6 mmP4 is used with 

TABLE I 

Dominant Eigenvalue of A and Corresponding AI, 
for Drop Distributions of the Form N0 emnd 

No (mme4) A (mm-‘) R (mm hrr’) 19 (se-‘) Ar, (set) 

8 x 10-h 1.56 100 -0.05 37.94 
8 x 10m4 4.10 100 - 0.68 2.96 
8x1o-4 3.55 200 - 0.97 2.05 
2 x 1o-3 4.30 200 -1.50 1.34 
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a 
EULER METHOD 

No0 
= 8 x lo-4m-4 

R = 100 m m  hr-' 

t(min) 

1 2 3 

dhm) 

0 

-5 

-10 

-15 

b 
EULER METHOD 

No0 = 8 x 10‘4lTr-4 

R = 100 mn hr-' 

c nt = 4s 

d (mm) 
FIG. 1. Time evolution through breakup and coalescence of water drop spectra initially of Marshall- 

Palmer Form n(d) = N, exp( -Ad) with rainfall rate R computed using the explicit Euler method with 
time increment At for N, = 8 x lo-“ mm-“ and R = 100 mm hr-i. Solution is stable in (a), unstable in 
(b) for the values of At indicated. Dashed lines indicate positive n(d) in the error-dominated portion of 
the spectrum where alternating positive and negative values occur for large d. Insets show At, versus t 
(solution stable if and only if At 6 A&); dashed lines in insets indicate values of At used in numerical 
solution. 

/f = 1.56 mm- ‘, the restriction on At is less severe. Results for this case are shown 
in Figs. 2a,b, where it is seen that stability can be maintained with a At as large as 
6 sec. 

4. A PROPOSED SOLUTION TECHNIQUE 

Simply maintaining stability of (32) through imposition of the stability criterion 
is safe but not efficient, and so we seek a scheme that offers unconditional stability 
without excessive computational burden. We consider the backward Euler method 

n ‘+‘-n’=At(B+C)‘+’ (36) 

which is stable for all At > 0. Due to the nonlinearity of B and C, (36) must be 
solved by iterative means, e.g., predictorcorrector schemes. However, convergence 
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FIG. 2. Same as for Fig. 1 but with IV, = 8 x 10e6 mrnm4 (the “classical” value of N,,,,). 

of standard corrector iteration formulas is controlled by the size of IL91 and again, 
for certain drop spectra, dt has to be severely restricted to arrive at a solution. 
Newton-type iteration may be used, but this approach involves the added expense 
of evaluating the Jacobian matrix at possibly frequent intervals. The number of 
such evaluations can be reduced if the Jacobian elements vary slowly (e.g., Gear 
[ 171). In moist-convection modeling, the Jacobian may vary slowly at some points 
in the spatial domain, but rapidly at others (e.g., where the liquid water content of 
the cloud is high). To avoid the problems associated with the nonuniformity of the 
convective-cloud domain in regard to rain formation, it is advantageous to design 
an algorithm that can be applied in exactly the same manner at every point. 

To avoid the restriction on At, we design a convergent iteration using the fact 
that A is approximately upper triangular. Since it is the diagonal elements (the 
eigenvalues) of A that cause the stability problem, only those elements are involved 
in the terms that make the process implicit. Our algorithm is based on the scheme 

n,+ -n; = At[B,(n; ,..., nip 1, n*, n;+ 1 ,..., nb) 

+ c&l; )...) n;- 1) n*, ?I;+ I )...) n’N)] (374 
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n;+l -n;=At[B,(n: )...) n:-1, n;+‘, n,*,, )...) ng 

+ C,(n: ,..., n,*_ ,, n;+ l, nl*, 1 ,..., n$)]. (37b) 

Bi and Ci are quadratic forms, so that all terms n,nj are linear in ni as long as i # j. 
Terms of the form n: we write as n,n* in (37a) and n*n; + 1 in (37b). This minor 
change in (37a), (37b) yields two sets of equations that are uncoupled and linear in 
the unknowns, and hence rapidly solvable. Based on (15) for example, (37b) is 
modified to 

n?+’ 
I 

- n; = nj* 2 piiknk*+n;+’ 
k=l 

k$l Piikn,* 

n? 

/=i+l 

pVkn,* + Pij?:+‘) 

kfi 

, 
- nf+’ , k!l qikn,* + coalescence terms}. (38) 

Equations (37a), (37b) represent the first two steps of an iterative process whose 
rate of convergence can be estimated by applying the scheme to the linearized 
system (27). This version of the iteration takes the form 

n’+l L,+l, -II’= At[(A-D)n;G’ +DII;:+‘~,], 1 = 0, 1, 2 )‘..) (39) 

where D is the diagonal matrix containing the (negative) diagonal elements of A. 
For analysis sake, (39) can be written as 

n’+l c,+l,=[(I-AtD)-lAt(A-D)]n~~l+(I-AtD)-’nT. (40) 

Since A-D is approximately upper triangular with zeros on the diagonal, the 
matrix product P inside the brackets [ ] has the same property, so that the eigen- 
values of P are expected to be close to zero. 

Since P is only an approximation to an upper triangular matrix, it is necessary to 
test computationally whether the eigenvalues of P(At) are, in fact, “close to zero” 

TABLE II 

Dominant Eigenvalue of P(dt) for Drop Distributions 
of the form A’,, ecnd 

N, (mme4) 

8 x 1O-6 
8 x IO-4 
8 x 1O-4 
2 x 10-3 

A (mm-‘) 

1.56 
4.10 
3.55 
4.30 

R (mm hr-*) 

loo 
loo 
200 
200 

Il.&l (set-‘) 

0.44 
0.46 
0.56 
0.61 
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for the large At that we wish to use in practice. For this purpose, a value of 
At = 15 set has been used in calculating the dominant eigenvalue A& of P(At) by the 
QR method. The results are shown in Table II for the same exponential dis- 
tributions treated in Table I. In each case, the eigenvalue largest in modulus (the 
“convergence factor”) is not << 1 but at least is small enough to provide sufficiently 
rapid convergence. In principle, the iterative process should be continued until 
some suitable acceptability criterion is satisfied. In practice, we have found for all of 
the test cases listed in Table II, that if (37a), (37b) are followed by a third iteration, 
there is little change in the solution. In the worst case (largest I&l), the change is at 
most 4 % in the early stages of drop evolution (t < 1 min) and is < 1% in the later 
stages as the solution rapidly approaches equilibrium. 

Figure 3 shows the results of applying the two-step scheme to the same problem 
whose solutions are illustrated in Fig. 1. The solid curves show the evolution of the 
spectrum using a 2 set time increment used to maintain stability of the explicit 
scheme. The dashed curves show the solution computed with a time increment of 
15 set, commensurate with that appropriate for macrophysics processes. For the 
case treated here, At is substantially increased (by a factor of 7.5) without introduc- 
ing unacceptably large truncation error. The error is confined mainly to the tails of 
the spectra which contain only about 2% of the total water content. 

Figure 4 shows the solution curves for the “classical” case treated in Fig. 2. The 
truncation error brought about by the expansion of At from 6 to 15 set is negligible 
for modeling purposes. In using the implicit scheme with t = 15 set, we slightly 

d(mmj 

FIG. 3. Same case presented in Figs. la,b but with solution computed using the two-step implicit 
method. Solutions are generated with time increment At = 2 set (solid curves) and 15 set (dashed 
curves). 

5Sl/SS/3-10 
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d(mm/ 

FIG. 4. Same case presented in Figs. 2a,b but with solution computed using the two-step implicit 
method. Solutions are generated with time increment At = 6 set (solid curves) and 15 set (dashed cur- 
ves). 

more than double the number of arithmetic operations per step and slightly more 
than double the step size so that there is no direct gain in efficiency over the explicit 
scheme. However, the need to compute eigenvalues and perform stability tests is 
eliminated. 

Table III shows values of the ratio 

R 
CPU time (set) for explicit scheme within given At 

“” = CPU time (set) for implicit scheme within At = 15 set 

for several 5-min simulations performed on the CRAY-1. In calculation of R,,,, 
the initialization time (for input of coefficients, etc.) has been subtracted out to 
allow fair comparison of the Euler method with the two-step implicit scheme. In the 

TABLE III 

Computer Processing Time Ratios for Comparison of 
Explicit and Implicit Schemes 

At (set) RCpU (a) 
(Euler Method) (without A9 calculation) 

RCPU (b) 
(with 1, calculation) 

1 5.21 5.75 
2 2.62 3.20 
6 0.86 1.27 
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simulations, the explicit scheme has been implemented (a) without eigenvalue 
calculation and (b) with calculation of 1, at intervals of 30 set in t. The two 
columns for R,,” show the results for the two sets of simulations. When there is no 
eigenvalue calculation, it is seen that the explicit scheme with At = 6 set is slightly 
faster than the implicit scheme. When the A, calculation accompanies the Euler 
method, as it would in practical application, the results favor the implicit method in 
all cases tested. For the case in which the explicit scheme requires a 1-set time 
increment (e.g., the case in which N,,, = 2 x 10e3, R = 200 mm hr-‘), the implicit 
scheme is nearly 6 times faster. 

5. SUMMARY 

An implicit scheme has been designed for solution of the coalescence/collision- 
breakup equation. The scheme provides convergence without practical restriction 
on the step size and offers efficiency by requiring only the solution of (usually two) 
linear, uncoupled systems at each step. The allowed use of large time increments 
eliminates the need to incorporate temporal grid nesting in the design of moist con- 
vection models of meteorology. Such models entail solution of the microphysics 
equations at each spatial grid point within the domain of convective activity. In this 
context, the simplicity of the new scheme offers considerable advantage. 
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